Криптография. Алгоритмы шифрования. Симметричный алгоритм шифрования основные понятия Шифрование данных алгоритмы и методы

В связи с тем, что основной функцией нашего программного обеспечения является шифрование данных, нам часто задают вопросы, касающиеся тех или иных аспектов криптографии. Мы решили собрать наиболее часто задаваемые вопросы, в один документ и постарались дать на них максимально подробные, но, в то же время, не перегруженные лишней информацией ответы.

1. Что такое криптография?

Криптография — это теоретическая научная дисциплина, раздел математики, изучающая вопросы преобразования информации с целью ее защиты от разумных действий противника.

2. Что такое алгоритм шифрования?

Алгоритм шифрования — это набор логических правил, определяющих процесс преобразования информации из открытого состояния в зашифрованное (зашифровывание) и, наоборот, из зашифрованного состояния в открытое (расшифровывание).

Алгоритмы шифрования появляются в результате теоретических исследований, как отдельных ученых, так и научных коллективов.

3. Как с помощью шифрования защищаются данные?

Основной принцип защиты данных с помощью шифрования — это зашифровывание данных. Зашифрованные данные для постороннего выглядят как «информационный мусор» — бессмысленный набор символов. Таким образом, если информация в зашифрованном виде попадет к злоумышленнику, он просто не сможет ей воспользоваться.

4. Какой алгоритм шифрования самый стойкий?

В принципе, любой алгоритм шифрования, предложенный каким-либо известным специалистом в области криптографии, считается стойким до тех пор, пока не будет доказано обратное.

Как правило, все вновь появляющиеся алгоритмы шифрования публикуются для всеобщего ознакомления, и всесторонне изучаются в специализированных криптографических научных центрах. Результаты таких изучений также публикуются для всеобщего ознакомления.

5. Что такое ключ шифрования?

Ключ шифрования — это случайная, псевдослучайная или специальным образом сформированная последовательность бит, являющаяся переменным параметром алгоритма шифрования.

Иными словами, если зашифровать одну и ту же информацию одним и тем же алгоритмом, но разными ключами, результаты получится также разные.

Ключ шифрования имеет одну существенную характеристику — длину, которая, как правило, измеряется в битах.

6. Какие бывают алгоритмы шифрования?

Алгоритмы шифрования делятся на два больших класса — симметричные и асимметричные (или несимметричные).

Симметричные алгоритмы шифрования используют один и тот же ключ для зашифровывания информации и для ее расшифровывания. При этом ключ шифрования должен быть секретным.

Симметричные алгоритмы шифрования, как правило, просты в реализации и не требуют для своей работы много вычислительных ресурсов. Однако неудобство таких алгоритмов проявляется в случаях, когда, например, двум пользователям надо обменяться ключами. В этом случае пользователям надо или непосредственно встретиться друг с другом, или иметь какой-то надежный, защищенный от перехвата канал для пересылки ключа, что не всегда возможно.

Примеры симметричных алгоритмов шифрования — DES, RC4, RC5, AES, CAST.

Асимметричные алгоритмы шифрования используют два ключа — один для зашифровывания, другой для расшифровывания. В таком случае говорят о паре ключей. Один ключ из пары может быть открытым (доступным для всех), другой — секретным.

Асимметричные алгоритмы шифрования более сложны в реализации и более требовательны к вычислительным ресурсам, чем симметричные, однако, проблема обмена ключами между двумя пользователями решается проще.

Каждый пользователь может создать собственную пару ключей, и послать открытый ключ своему абоненту. Этим ключом можно только зашифровать данные, для расшифровывания нужен секретный ключ, который хранится только у его владельца. Таким образом, получение злоумышленником открытого ключа ничего ему не даст, поскольку расшифровать им зашифрованные данные невозможно.

Примеры асимметричных алгоритмов шифрования — RSA, El-Gamal.

7. Как взламывают алгоритмы шифрования?

В криптографической науке есть подраздел — криптоанализ, который изучает вопросы взлома алгоритмов шифрования, то есть получения открытой информации из зашифрованной без ключа шифрования.

Существует много различных способов и методов криптоанализа, большинство из которых слишком сложно и объемно для воспроизведения здесь.

Единственный метод, который уместно упомянуть — метод прямого перебора всех возможных значений ключа шифрования (также называемый методом «грубой силы», или brute force). Суть данного метода состоит в переборе всех возможных значений ключа шифрования до тех пор, пока не будет подобран нужный ключ.

8. Какова должна быть длина ключа шифрования?

На сегодняшний день для симметричных алгоритмов шифрования достаточной длиной ключа шифрования считается 128 бит (16 байт). Для полного перебора всех возможных ключей длиной 128 бит (атака brute force) за один год необходимо наличие 4,2х1022 процессоров производительностью 256 миллионов операций шифрования в секунду. Стоимость такого количества процессоров составляет 3,5х1024 долларов США (по данным Bruce Schneier, Applied Cryptography).

Существует международный проект distributed.net , целью которого является объединение пользователей Интернет для создания виртуального распределенного суперкомпьютера, занимающегося перебором ключей шифрования. Последний проект по взлому ключа 64 бит был завершен в течение 1757 дней, в нем приняло участие более трехсот тысяч пользователей, а вычислительная мощность всех компьютеров проекта была эквивалентна почти 50.000 процессорам AMD Athlon XP с тактовой частотой 2 ГГц.

При этом следует учитывать, что увеличение длины ключа шифрования на один бит увеличивает количество значений ключа, а, следовательно, и время перебора, в два раза. То есть, исходя из вышеприведенных цифр, за время 1757 * 2 дней можно взломать не 128-битный ключ, как может показаться на первый взгляд, а всего лишь 65-битный.

9. Я слышал о ключах шифрования 1024 и даже 2048 бит, а вы говорите, что 128 бит вполне достаточно. Что это значит?

Все правильно, ключи шифрования 512, 1024 и 2048 бит, а иногда и длиннее используются в асимметричных алгоритмах шифрования. В них используются принципы, совершенно отличные от симметричных алгоритмов, поэтому масштабы ключей шифрования также разные.

Ответ на этот вопрос — самая охраняемая тайна спецслужб любого государства. С теоретической точки зрения прочитать данные, зашифрованные с помощью известного алгоритма ключом достаточной длины невозможно (см. предыдущие вопросы), однако, кто знает, что скрывается за завесой государственной тайны? Вполне может оказаться, что существуют какие-то технологии инопланетян, известные правительству, с помощью которых можно взломать любой шифр 🙂

Единственное, что можно утверждать с уверенностью — ни одно государство, ни одна спецслужба не раскроет этого секрета, и даже в случае наличия возможности как-то расшифровывать данные, никогда и никак этого не проявит.

Для иллюстрации этого утверждения можно привести исторический пример. Во время второй мировой войны британскому премьер-министру Уинстону Черчиллю в результате перехвата и дешифровки немецких сообщений стало известно о предстоящей бомбардировке города Ковентри. Несмотря на это, он не принял никаких мер, чтобы противник не узнал о том, что британская разведка может дешифровать их сообщения. В результате, в ночь с 14 на 15 ноября 1940 года Ковентри был разрушен немецкой авиацией, погибло большое количество мирных жителей. Таким образом, для Черчилля цена разглашения информации о том, что он может дешифровать немецкие сообщения, оказалась выше цены нескольких тысяч человеческих жизней.

Очевидно, что для современных политиков цена подобной информации еще выше, поэтому о возможностях современных спецслужб мы ничего не узнаем, ни в явном виде, ни в косвенном. Так что если даже ответ на этот вопрос утвердительный, эта возможность, скорее всего, никак не проявится.

Источник: SecurIT

^ вернуться в начало ^

Обычно, новые алгоритмы шифрования публикуются для всеобщего ознакомления и изучаются в специализированных научных центрах. Результаты таких изучений тоже публикуются для всеобщего ознакомления.

Симметричные алгоритмы
Алгоритмы шифрования делятся на два больших класса: симметричные (AES, ГОСТ, Blowfish, CAST, DES) и асимметричные (RSA, El-Gamal). Симметричные алгоритмы шифрования используют один и тот же ключ для зашифровывания информации и для ее расшифровывания, а асимметричные алгоритмы используют два ключа — один для зашифровывания, другой для расшифровывания.

Если зашифрованную информацию необходимо передавать в другое место, то в этом надо передавать и ключ для расшифрования. Слабое место здесь — это канал передачи данных — если он не защищенный или его прослушивают, то ключ для расшифрования может попасть к злоумышленику. Системы на ассиметричных алгоритмах лишены этого недостатка. Поскольку каждый участник такой системы обладает парой ключей: Открытым и Секретным Ключом.

Ключ шифрования
Это случайная или специальным образом созданная по паролю последовательность бит, являющаяся переменным параметром алгоритма шифрования.
Если зашифровать одни и те же данные одним алгоритмом, но разными ключами, результаты получатся тоже разные.

Обычно в Программах для шифрования (WinRAR, Rohos и т.д.) ключ создается из пароля, который задает пользователь.

Ключ шифрования бывает разной длины, которая, как правило, измеряется в битах. С увеличением длины ключа повышается теоритическая стойкость шифра. На практике это не всегда верно.

В криптографии считается, что механизм шифрования — это несекретная величина, и злоумышленник может иметь полный исходный код алгоритма шифрования, а также зашифрованный текст (правило Керкхоффа). Еще одно допущение, которое может иметь место — злоумышленник может знать часть незашифрованного (открытого) текста.

Стойкость алгоритма шифрования.
Алгоритм шифрования считается стойким до тех пор, пока не будет доказано обратное. Таким образом, если алгоритм шифрования опубликован, существует более 5 лет, и для него не найдено серьезных уязвимостей, можно считать, что его стойкость подходит для задач защиты секретной информации.

Теоретическая и практическая стойкость.
В 1949 г. К.Э. Шеннон опубликовал статью «Теория связи в секретных системах». Шеннон рассматривал стойкость криптографических систем как Практическую и Теоритическую. Вывод по теоритической стойкости до сих пор остается пессимистическим: длина ключа должна быть равна длине открытого текста.
Поэтому Шеннон также рассмотрел вопрос и по практической стойкости криптографических систем. Надежна ли система, если злоумышленник обладает ограниченным временем и вычислительными ресурсами для анализа перехваченных сообщений?

Обычно уязвимости находят в программах, которые шифруют данные по какому-либо алгоритму. В этом случае, программисты допускают ошибку в логике программы или в криптографическом протоколе, благодaря чему, изучив, как работает программа (на низком уровне), можно в итоге получить доступ к секретной информации.

Взлом алгоритма шифрования
Считается, что криптосистема раскрыта, если злоумышленник сможет вычислить секретный ключ, а также выполнить алгоритм преобразования, эквивалентный исходному криптоалгоритму. И чтобы этот алгоритм был выполним за реальное время.

В криптологии есть подраздел — криптоанализ, который изучает вопросы взлома или подделывания зашифрованных сообщений. Существует много способов и методов криптоанализа. Самый популярный — это метод прямого перебора всех возможных значений ключа шифрования (так называемым методом «грубой силы» или brute force). Суть данного метода состоит в переборе всех возможных значений ключа шифрования до тех пор, пока не будет подобран нужный ключ.

На практике это означает, что злоумышленник должен:

  • Иметь в распоряжении криптосистему (т.е. программу) и примеры зашифрованных сообщений.
  • Разобраться в криптографическом протоколе. Иначе говоря, как программа шифрует данные.
  • Разработать и реализовать алгоритм перебора Ключей для этой криптосистемы.

Как определить, что ключ верный или нет?
Все зависит от конкретной программы и реализации протокола шифрования. Обычно, если после расшифрования получился ‘мусор’, то это неверный Ключ. А если более менее осмысленный текст (это можно проверить), то значит, Ключ верный.

Алгоритмы шифрования
AES (Rijndael) . В настоящее время является федеральным стандартом шифрования США.

Какой алгоритм шифровки выбрать для защиты информации?

Утвержден министерством торговли в качестве стандарта 4 декабря 2001 года. Решение вступило в силу с момента опубликования в федеральном реестре (06.12.01). В качестве стандарта принят вариант шифра только с размером блока 128 бит.

ГОСТ 28147-8. Стандарт Российской Федерации на шифрование и имитозащиту данных. Первоначально имел гриф (ОВ или СС — точно не известно), затем гриф последовательно снижался, и к моменту официального проведения алгоритма через Госстандарт СССР в 1989 году был снят. Алгоритм остался ДСП (как известно, ДСП не считается грифом). В 1989 году стал официальным стандартом СССР, а позже, после распада СССР, федеральным стандартом Российской Федерации.

Blowfish Сложная схема выработки ключевых элементов существенно затрудняет атаку на алгоритм методом перебора, однако делает его непригодным для использования в системах, где ключ часто меняется, и на каждом ключе шифруется небольшие по объему данные.

Алгоритм лучше всего подходит для систем, в которых на одном и том же ключе шифруются большие массивы данных.

DES Федеральный стандарт шифрования США в 1977-2001 годах. В качестве федерального стандарта США принят в 1977 году. В декабре 2001 года утратил свой статус в связи с введением в действие нового стандарта.

CAST В некотором смысле аналог DES.

www.codenet.ru/progr/alg/enc
Алгоритмы шифрования, Обзор, информация, сравнение.

http://www.enlight.ru/crypto
Материалы по асимметричному шифрованию, цифровой подписи и другим «современным» криптографическим системам.

Александр Великанов,
Ольга Чебан,
Tesline-Service SRL.

Бывший банкир из Абу-Даби Мохаммад Гейт бин Махах Аль Мазруи разработал шифр, который, как он заявляет, невозможно взломать. Шифр под названием «Код Абу-Даби» создан на основе группы символов, придуманных самим Аль Мазруи. В его коде каждая буква заменена специально изобретенным символом, и эти символы не принадлежат ни одному из известных в мире языков.

Какие алгоритмы шифрования данных более безопасны

Для работы над шифром, который Аль Мазруи называет «абсолютно новым», разработчику понадобилось полтора года.

По словам энтузиаста, создать свой собственный код под силу каждому, а сложность шифра определяет длина его ключа. Считается, что в принципе при наличии желания, определенных навыков и соответствующего программного обеспечения практически каждый, даже самый сложный шифр может быть взломан.

Однако Аль Мазруи уверяет, что его творение не поддается взлому и является на сегодня самым надежным шифром. «Расшифровать документ, закодированный «Кодом Абу-Даби», практически невозможно», — уверен Аль Мазруи.

Чтобы доказать свою правоту, банкир бросил вызов всем незаурядным шифровальщикам, хакерам и криптографам, призывая их попробовать взломать его шифр.

3. Криптос — скульптура, которую американский ваятель Джеймс Сэнборн установил на территории штаб-квартиры ЦРУ в Лэнгли, штат Вирджиния, в 1990 году. Зашифрованное послание, нанесенное на нее, до сих пор не могут разгадать.

4. Шифр, нанесенный на китайский золотой слиток . Семь золотых слитков были в 1933 году предположительно выданы генералу Ваню в Шанхае. На них нанесены картинки, китайские письмена и какие-то зашифрованные сообщения, в том числе латинскими буквами. Они, возможно, содержат свидетельства подлинности металла, выданные одним из банков США.

Какой алгоритм шифрования выбрать в TrueCrypt

5. Криптограммы Бейла — три зашифрованных сообщения, которые, как предполагается, содержат сведения о местонахождении клада из двух фургонов золота, серебра и драгоценных камней, зарытого в 1820-х годах под Линчбергом, что в округе Бедфорд, штат Виргиния, партией золотоискателей под предводительством Томаса Джефферсона Бейла. Цена не найденного доныне клада в пересчете на современные деньги должна составлять около 30 млн долларов. Загадка криптограмм не раскрыта до сих пор, в частности, спорным остается вопрос о реальном существовании клада. Одно из сообщений расшифровано — в нем описан сам клад и даны общие указания на его местоположение. В оставшихся нераскрытыми письменах, возможно, содержатся точное место закладки и список владельцев клада. (подробная информация)

6. Рукопись Войнича , которую часто называют самой таинственной в мире книгой. В рукописи использован уникальный алфавит, в ней около 250 страниц и рисунки, изображающие неведомые цветы, обнаженных нимф и астрологические символы. Впервые она появилась в конце XVI века, когда император Священной Римской империи Рудольф II купил ее в Праге у неизвестного торговца за 600 дукатов (около 3,5 кг золота, сегодня более 50 тысяч долларов). От Рудольфа II книга перешла к дворянам и ученым, а в конце XVII века исчезла. Манускрипт вновь появился примерно в 1912 году, когда его купил американский книготорговец Вилфрид Войнич. После его смерти рукопись была передана в дар Йельскому университету. Британский ученый Гордон Рагг считает, что книга — искусная мистификация. В тексте есть особенности, не свойственные ни одному из языков. С другой стороны, некоторые черты, например, длина слов, способы соединения букв и слогов, похожи на существующие в настоящих языках. «Многие считают, что все это слишком сложно для мистификации, чтобы выстроить такую систему, какому-нибудь безумному алхимику потребовались бы годы», — говорит Рагг. Однако Рагг показывает, что добиться такой сложности можно было легко, используя шифровальное устройство, придуманное примерно в 1550 году и названное сеткой Кардана. В этой таблице символов слова создаются передвижением карточки с прорезанными в ней отверстиями. Благодаря пробелам, оставленным в таблице, слова получаются разной длины. Накладывая такие решетки на таблицу слогов манускрипта, Рагг создал язык, которому присущи многие, если не все, особенности языка рукописи. По его словам, на создание всей книги хватило бы трех месяцев. (подробная информация, википедия)

7. Шифр Дорабелла , составленный в 1897 году британским композитором сэром Эдвардом Уильямом Эльгаром. В зашифрованном виде он отправил письмо в город Вульвергемптон своей подруге Доре Пенни, 22-летней дочери Альфреда Пенни, настоятеля собора святого Петра. Этот шифр остается неразгаданным.

8. До недавнего времени в списке присутствовал и чаошифр , который не смогли раскрыть при жизни его создателя. Шифр изобрел Джон Ф. Байрн в 1918 году, и в течение почти 40 лет безуспешно пытался заинтересовать им власти США. Изобретатель предложил денежную награду тому, кто сможет раскрыть его шифр, но в результате никто за ней не обратился.

Но в мае 2010 года члены семьи Байрна передали все оставшиеся от него документы в Национальный музей криптографии в Мэрилэнде, что привело к раскрытию алгоритма.

9. Шифр Д’Агапейеффа . В 1939 году британский картограф русского происхождения Александер Д’Агапейефф опубликовал книгу по основам криптографии Codes and Ciphers, в первом издании которой привел шифр собственного изобретения. В последующие издания этот шифр включен не был. Впоследствии Д`Агапейефф признался, что забыл алгоритм раскрытия этого шифра. Подозревают, что неудачи, постигшие всех, кто пытался расшифровать его работу, вызваны тем, что при зашифровке текста автор допускал ошибки.

Но в наше время появилась надежда, что шифр удастся раскрыть с использованием современных методов — например, генетического алгоритма.

10. Таман Шуд . 1 декабря 1948 года на побережье Австралии в Сомертоне, что под Аделаидой, было найдено мертвое тело мужчины, одетого в свитер и пальто, несмотря на характерно жаркий для австралийского климата день. Документов при нем не обнаружили. Попытки сравнить отпечатки его зубов и пальцев с имеющимися данными на живых людей также ни к чему не привели. Патологоанатомическое освидетельствование выявило противоестественный прилив крови, которой была наполнена, в частности, его брюшная полость, а также увеличение внутренних органов, но никаких инородных веществ в его организме при этом найдено не было. На железнодорожной станции одновременно нашли чемодан, который мог принадлежать погибшему. В чемодане лежали брюки с секретным карманом, в котором нашли вырванный из книги кусок бумаги с напечатанными на нем словами Taman Shud . Следствие установило, что клочок бумаги был вырван из очень редкого экземпляра сборника «Рубаи» великого персидского поэта Омара Хайяма. Сама книга была обнаружена на заднем сидении автомобиля, брошенного незапертым. На задней обложке книги были небрежно набросаны пять строк заглавными буквами — смысл этого послания разгадать так и не удалось. По сей день эта история остается одной из самых таинственных загадок Австралии.


Шифрование является наиболее широко используемым криптографическим методом сохранения конфиденциальности информации, он защищает данные от несанкционированного ознакомления с ними. Для начала рассмотрим основные методы криптографической защиты информации. Словом, криптография - наука о защите информации с использованием математических методов. Существует и наука, противоположная криптографии и посвященная методам вскрытия защищенной информации - криптоанализ . Совокупность криптографии и криптоанализа принято называть криптологией . Криптографические методы могут быть классифицированы различным образом, но наиболее часто они подразделяются в зависимости от количества ключей, используемых в соответствующих криптоалгоритмах (см. рис. 1):

  1. Бесключевые, в которых не используются какие-либо ключи.
  2. Одноключевые - в них используется некий дополнительный ключевой параметр - обычно это секретный ключ.
  3. Двухключевые, использующие в своих вычислениях два ключа: секретный и открытый.

Рис. 1. Криптоалгоритмы

Обзор криптографических методов

Шифрование является основным методом защиты; рассмотрим его подробно далее.

Стоит сказать несколько слов и об остальных криптографических методах:

  1. Электронная подпись используется для подтверждения целостности и авторства данных. Целостность данных означает, что данные не были случайно или преднамеренно изменены при их хранении или передаче.
    Алгоритмы электронной подписи используют два вида ключей:
    • секретный ключ используется для вычисления электронной подписи;
    • открытый ключ используется для ее проверки.
    При использовании криптографически сильного алгоритма электронной подписи и при грамотном хранении и использовании секретного ключа (то есть при невозможности использования ключа никем, кроме его владельца) никто другой не в состоянии вычислить верную электронную подпись какого-либо электронного документа.
  2. Аутентификация позволяет проверить, что пользователь (или удаленный компьютер) действительно является тем, за кого он себя выдает. Простейшей схемой аутентификации является парольная - в качестве секретного элемента в ней используется пароль, который предъявляется пользователем при его проверке. Такая схема доказано является слабой, если для ее усиления не применяются специальные административно-технические меры. А на основе шифрования или хэширования (см. ниже) можно построить действительно сильные схемы аутентификации пользователей.
  3. Существуют различные методы криптографического контрольного суммирования:
    • ключевое и бесключевое хэширование;
    • вычисление имитоприставок;
    • использование кодов аутентификации сообщений.
    Фактически, все эти методы различным образом из данных произвольного размера с использованием секретного ключа или без него вычисляют некую контрольную сумму фиксированного размера, однозначно соответствующую исходным данным.
    Такое криптографическое контрольное суммирование широко используется в различных методах защиты информации, например:
    • для подтверждения целостности любых данных в тех случаях, когда использование электронной подписи невозможно (например, из-за большой ресурсоемкости) или является избыточным;
    • в самих схемах электронной подписи - "подписывается" обычно хэш данных, а не все данные целиком;
    • в различных схемах аутентификации пользователей.
  4. Генераторы случайных и псевдослучайных чисел позволяют создавать последовательности случайных чисел, которые широко используются в криптографии, в частности:
    • случайные числа необходимы для генерации секретных ключей, которые, в идеале, должны быть абсолютно случайными;
    • случайные числа применяются во многих алгоритмах электронной подписи;
    • случайные числа используются во многих схемах аутентификации.
    Не всегда возможно получение абсолютно случайных чисел - для этого необходимо наличие качественных аппаратных генераторов. Однако, на основе алгоритмов симметричного шифрования можно построить качественные генераторы псевдослучайных чисел.
Шифрование

Шифрование информации - это преобразование открытой информации в зашифрованную (которая чаще всего называется шифртекстом или криптограммой ), и наоборот. Первая часть этого процесса называется зашифрованием , вторая - расшифрованием .

Можно представить зашифрование в виде следующей формулы:

С = E k1 (M),

где:
M (message) - открытая информация,
С (cipher text) - полученный в результате зашифрования шифртекст,
E (encryption) - функция зашифрования, выполняющая криптографические преобразования над M ,
k1 (key) - параметр функции E , называемый ключом зашифрования.

В стандарте ГОСТ 28147-89 (стандарт определяет отечественный алгоритм симметричного шифрования) понятие ключ определено следующим образом: "Конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований".

Ключ может принадлежать определенному пользователю или группе пользователей и являться для них уникальным. Зашифрованная с использованием конкретного ключа информация может быть расшифрована только с использованием только этого же ключа или ключа, связанного с ним определенным соотношением.

Аналогичным образом можно представить и расшифрование:

M" = D k2 (C),

где:
M" - сообщение, полученное в результате расшифрования,
D (decryption) - функция расшифрования; так же, как и функция зашифрования, выполняет криптографические преобразования над шифртекстом,
k2 - ключ расшифрования.

Для получения в результате расшифрования корректного открытого текста (то есть того самого, который был ранее зашифрован: M" = M), необходимо одновременное выполнение следующих условий:

  1. Функция расшифрования должна соответствовать функции зашифрования.
  2. Ключ расшифрования должен соответствовать ключу зашифрования.

При отсутствии верного ключа k2 получить исходное сообщение M" = M с помощью правильной функции D невозможно. Под словом "невозможно" в данном случае обычно понимается невозможность вычисления за реальное время при существующих вычислительных ресурсах.

Алгоритмы шифрования можно разделить на две категории (см. рис. 1):

  1. Алгоритмы симметричного шифрования.
  2. Алгоритмы асимметричного шифрования.

В алгоритмах симметричного шифрования для расшифрования обычно используется тот же самый ключ, что и для зашифрования, или ключ, связанный с ним каким-либо простым соотношением. Последнее встречается существенно реже, особенно в современных алгоритмах шифрования. Такой ключ (общий для зашифрования и расшифрования) обычно называется просто ключом шифрования .

В асимметричном шифровании ключ зашифрования k1 легко вычисляется из ключа k2 таким образом, что обратное вычисление невозможно. Например, соотношение ключей может быть таким:

k1 = a k2 mod p,

где a и p - параметры алгоритма шифрования, имеющие достаточно большую размерность.

Такое соотношение ключей используется и в алгоритмах электронной подписи.

Основной характеристикой алгоритма шифрования является криптостойкость , которая определяет его стойкость к раскрытию методами криптоанализа. Обычно эта характеристика определяется интервалом времени, необходимым для раскрытия шифра.

Симметричное шифрование менее удобно из-за того, что при передаче зашифрованной информации кому-либо необходимо, чтобы адресат заранее получил ключ для расшифрования информации. У асимметричного шифрования такой проблемы нет (поскольку открытый ключ можно свободно передавать по сети), однако, есть свои проблемы, в частности, проблема подмены открытого ключа и медленная скорость шифрования. Наиболее часто асимметричное шифрование используется в паре с симметричным - для передачи ключа симметричного шифрования, на котором шифруется основной объем данных. Впрочем, схемы хранения и передачи ключей - это тема отдельной статьи. Здесь же позволю себе утверждать, что симметричное шифрование используется гораздо чаще асимметричного, поэтому остальная часть статьи будет посвящена только симметричному шифрованию.

Симметричное шифрование бывает двух видов:

  • Блочное шифрование - информация разбивается на блоки фиксированной длины (например, 64 или 128 бит), после чего эти блоки поочередно шифруются. Причем, в различных алгоритмах шифрования или даже в разных режимах работы одного и того же алгоритма блоки могут шифроваться независимо друг от друга или "со сцеплением" - когда результат зашифрования текущего блока данных зависит от значения предыдущего блока или от результата зашифрования предыдущего блока.
  • Поточное шифрование - необходимо, прежде всего, в тех случаях, когда информацию невозможно разбить на блоки - скажем, некий поток данных, каждый символ которых должен быть зашифрован и отправлен куда-либо, не дожидаясь остальных данных, достаточных для формирования блока. Поэтому алгоритмы поточного шифрования шифруют данные побитно или посимвольно. Хотя стоит сказать, что некоторые классификации не разделяют блочное и поточное шифрование, считая, что поточное шифрование - это шифрование блоков единичной длины.

Рассмотрим, как выглядят изнутри алгоритмы блочного симметричного шифрования.Структура алгоритмов шифрования

Подавляющее большинство современных алгоритмов шифрования работают весьма схожим образом: над шифруемым текстом выполняется некое преобразование с участием ключа шифрования, которое повторяется определенное число раз (раундов). При этом, по виду повторяющегося преобразования алгоритмы шифрования принято делить на несколько категорий. Здесь также существуют различные классификации, приведу одну из них. Итак, по своей структуре алгоритмы шифрования классифицируются следующим образом:

  1. Алгоритмы на основе сети Фейстеля.

    Сеть Фейстеля подразумевает разбиение обрабатываемого блока данных на несколько субблоков (чаще всего - на два), один из которых обрабатывается некоей функцией f() и накладывается на один или несколько остальных субблоков. На рис. 2 приведена наиболее часто встречающаяся структура алгоритмов на основе сети Фейстеля.

    Рис. 2. Структура алгоритмов на основе сети Фейстеля.

    Дополнительный аргумент функции f() , обозначенный на рис. 2 как Ki , называется ключом раунда . Ключ раунда является результатом обработки ключа шифрования процедурой расширения ключа, задача которой - получение необходимого количества ключей Ki из исходного ключа шифрования относительно небольшого размера (в настоящее время достаточным для ключа симметричного шифрования считается размер 128 бит). В простейших случаях процедура расширения ключа просто разбивает ключ на несколько фрагментов, которые поочередно используются в раундах шифрования; существенно чаще процедура расширения ключа является достаточно сложной, а ключи Ki зависят от значений большинства бит исходного ключа шифрования.

    Наложение обработанного субблока на необработанный чаще всего выполняется с помощью логической операции "исключающее или" - XOR (как показано на рис. 2). Достаточно часто вместо XOR здесь используется сложение по модулю 2 n , где n - размер субблока в битах. После наложения субблоки меняются местами, то есть в следующем раунде алгоритма обрабатывается уже другой субблок данных.

    Такая структура алгоритмов шифрования получила свое название по имени Хорста Фейстеля (Horst Feistel) - одного из разработчиков алгоритма шифрования Lucifer и разработанного на его основе алгоритма DES (Data Encryption Standard) - бывшего (но до сих пор широко используемого) стандарта шифрования США. Оба этих алгоритма имеют структуру, аналогичную показанной на рис. 2. Среди других алгоритмов, основанных на сети Фейстеля, можно привести в пример отечественный стандарт шифрования ГОСТ 28147-89, а также другие весьма известные алгоритмы: RC5, Blowfish, TEA, CAST-128 и т.д.

    На сети Фейстеля основано большинство современных алгоритмов шифрования - благодаря множеству преимуществ подобной структуры, среди которых стоит отметить следующие:

    • Алгоритмы на основе сети Фейстеля могут быть сконструированы таким образом, что для зашифрования и расшифрования могут использоваться один и тот же код алгоритма - разница между этими операциями может состоять лишь в порядке применения ключей Ki; такое свойство алгоритма наиболее полезно при его аппаратной реализации или на платформах с ограниченными ресурсами; в качестве примера такого алгоритма можно привести ГОСТ 28147-89.
  2. Алгоритмы на основе сети Фейстеля являются наиболее изученными - таким алгоритмам посвящено огромное количество криптоаналитических исследований, что является несомненным преимуществом как при разработке алгоритма, так и при его анализе.

    Существует и более сложная структура сети Фейстеля, пример которой приведен на рис. 3.

    Рис. 3. Структура сети Фейстеля.

    Такая структура называется обобщенной или расширенной сетью Фейстеля и используется существенно реже традиционной сети Фейстеля. Примером такой сети Фейстеля может служить алгоритм RC6.

  3. Алгоритмы на основе подстановочно-перестановочных сетей (SP-сеть - Substitution-permutation network).

    В отличие от сети Фейстеля, SP-сети обрабатывают за один раунд целиком шифруемый блок. Обработка данных сводится, в основном, к заменам (когда, например, фрагмент входного значения заменяется другим фрагментом в соответствии с таблицей замен, которая может зависеть от значения ключа Ki ) и перестановкам, зависящим от ключа Ki (упрощенная схема показана на рис. 4).

    Рис. 4. Подстановочно-перестановочная сеть.

    Впрочем, такие операции характерны и для других видов алгоритмов шифрования, поэтому, на мой взгляд, название "подстановочно-перестановочная сеть" является достаточно условным.

    SP-сети распространены существенно реже, чем сети Фейстеля; в качестве примера SP-сетей можно привести алгоритмы Serpent или SAFER+.

  4. Алгоритмы со структурой "квадрат" (Square).

    Для структуры "квадрат" характерно представление шифруемого блока данных в виде двумерного байтового массива. Криптографические преобразования могут выполняться над отдельными байтами массива, а также над его строками или столбцами.

    Структура алгоритма получила свое название от алгоритма Square, который был разработан в 1996 году Винсентом Риджменом (Vincent Rijmen) и Джоан Деймен (Joan Daemen) - будущими авторами алгоритма Rijndael, ставшего новым стандартом шифрования США AES после победы на открытом конкурсе. Алгоритм Rijndael также имеет Square-подобную структуру; также в качестве примера можно привести алгоритмы Shark (более ранняя разработка Риджмена и Деймен) и Crypton. Недостатком алгоритмов со структурой "квадрат" является их недостаточная изученность, что не помешало алгоритму Rijndael стать новым стандартом США.

    Рис. 5. Алгоритм Rijndael.

    На рис. 5 приведен пример операции над блоком данных, выполняемой алгоритмом Rijndael.

  5. Алгоритмы с нестандартной структурой, то есть те алгоритмы, которые невозможно причислить ни к одному из перечисленных типов. Ясно, что изобретательность может быть безгранична, поэтому классифицировать все возможные варианты алгоритмов шифрования представляется сложным. В качестве примера алгоритма с нестандартной структурой можно привести уникальный по своей структуре алгоритм FROG, в каждом раунде которого по достаточно сложным правилам выполняется модификация двух байт шифруемых данных (см. рис. 6).

    Рис. 6. Модификация двух байт шифруемых данных.

    Строгие границы между описанными выше структурами не определены, поэтому достаточно часто встречаются алгоритмы, причисляемые различными экспертами к разным типам структур. Например, алгоритм CAST-256 относится его автором к SP-сети, а многими экспертами называется расширенной сетью Фейстеля. Другой пример - алгоритм HPC, называемый его автором сетью Фейстеля, но относимый экспертами к алгоритмам с нестандартной структурой.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Курсовая работа

На тему:

Алгоритмы шифрования данных

Введение

1. Назначение и структура алгоритмов шифрования

1.1 Обзор криптографических методов

2. Алгоритм симметричного шифрования

2.1 Структура алгоритмов шифрования

3. Применение симметричного алгоритма шифрования

Заключение

Список литературы

Введение

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен.

Почему проблема использования криптографических методов в информационных системах стала в настоящий момент особо актуальна?

До сих пор любая известная форма коммерции потенциально подвержена мошенничеству - от обвешивания на рынке до фальшивых счетов и подделки денежных знаков. Схемы электронной коммерции не исключение. Такие формы нападения может предотвратить только стойкая криптография.

Электронные деньги без криптографии не выживут. Интернет постепенно превращается в Информационную Магистраль. Это связано с тем, что количество пользователей Сети постоянно растет, как снежная лавина. Кроме обычного обмена информации в Сеть проникают деловые отношения, которые всегда влекут за собой денежные расчеты. Примеров торговли в Интернете различными товарами и услугами накопилось немало. Это и традиционная торговля, подкрепленная возможностями Сети, когда покупатель может выбрать товар из огромных каталогов и даже рассмотреть этот товар (такой сервис, основанный на передаче трехмерного изображения, становится все более распространенным). Это доступ к туристическим услугам, когда вы можете заранее узнать все о месте вашего путешествия и уровне сервиса, рассмотреть фотографии (природа, рестораны, бассейны, обстановка номера...), забронировать путевку и заказать авиабилеты. Таких примеров довольно много, и многие из них подразумевают денежные расчеты.

Что касается расчетов с помощью кредитной карты, то ее недостатки очевидны: необходимо обзаводится картой (а в России еще далеко не все знают, что это такое), есть и опасения, что всем в Интернете станут известны коды вашей кредитки злые люди очистят ваш счет. На самом деле вероятность такого мошенничества не больше той, что при обмене валюты вам подсунут фальшивые деньги. Да и вообще, к электронных денег проблем не больше, чем у обыкновенных. Для проведения расчетов в Сети разработано несколько платежных систем. Которые либо искусно применяют существующие кредитки, либо опираются на чистые электронные деньги, то есть на защищенную систему файлов, в которых хранятся записи о состоянии вашего счета. Таких систем в мире больше десятка, а в России тоже несколько, самая распространенная из которых - CyberPlat.

1. Расчеты в Сети связаны с передачей особой информации, которую нельзя открывать посторонним лицам.

2. При расчетах необходимо иметь гарантию, что все действующие лица (покупатель, продавец, банк или платежная система) именно те, за кого себя выдают.

Этих двух факторов достаточно, чтобы понять, что без криптографии расчеты в Сети невозможны, а сама идея электронных денег предполагает надежную защиту информации и гарантию того, что никто не сможет подменить участника сделки и таким образом украсть электронные деньги.

Появление новых мощных компьютеров, технологий сетевых и нейтронных вычислений, сделало возможным дискредитацию криптографических систем, еще недавно считавшимися нераскрываемыми.

Все это постоянно подталкивает исследователей на создание новых криптосистем и тщательный анализ уже существующих.

Актуальность и важность проблемы обеспечения информационной безопасности обусловлена следующими факторами:

* Современные уровни и темпы развития средств информационной безопасности значительно отстают от уровней и темпов развития информационных технологий.

* Высокие темпы роста парка персональных компьютеров, применяемых в разнообразных сферах человеческой деятельности.

1. Назначение и структура алгоритмов шифрования

Шифрование является наиболее широко используемым криптографическим методом сохранения конфиденциальности информации, он защищает данные от несанкционированного ознакомления с ними. Для начала рассмотрим основные методы криптографической защиты информации. Словом, криптография - наука о защите информации с использованием математических методов. Существует и наука, противоположная криптографии и посвященная методам вскрытия защищенной информации - криптоанализ . Совокупность криптографии и криптоанализа принято называть криптологией . Криптографические методы могут быть классифицированы различным образом, но наиболее часто они подразделяются в зависимости от количества ключей, используемых в соответствующих криптоалгоритмах (см. рис. 1):

1. Бесключевые, в которых не используются какие-либо ключи.

2. Одноключевые - в них используется некий дополнительный ключевой параметр - обычно это секретный ключ.

3. Двухключевые, использующие в своих вычислениях два ключа: секретный и открытый.

Рис. 1. Криптоалгоритмы

1.1 Обзор криптографических методов

Шифрование является основным методом защиты; рассмотрим его подробно далее.

Стоит сказать несколько слов и об остальных криптографических методах:

1. Электронная подпись используется для подтверждения целостности и авторства данных. Целостность данных означает, что данные не были случайно или преднамеренно изменены при их хранении или передаче.

Алгоритмы электронной подписи используют два вида ключей:

o секретный ключ используется для вычисления электронной подписи;

o открытый ключ используется для ее проверки.

При использовании криптографически сильного алгоритма электронной подписи и при грамотном хранении и использовании секретного ключа (то есть при невозможности использования ключа никем, кроме его владельца) никто другой не в состоянии вычислить верную электронную подпись какого-либо электронного документа.

2. Аутентификация позволяет проверить, что пользователь (или удаленный компьютер) действительно является тем, за кого он себя выдает. Простейшей схемой аутентификации является парольная - в качестве секретного элемента в ней используется пароль, который предъявляется пользователем при его проверке. Такая схема доказано является слабой, если для ее усиления не применяются специальные административно-технические меры. А на основе шифрования или хэширования (см. ниже) можно построить действительно сильные схемы аутентификации пользователей.

3. Существуют различные методы криптографического контрольного суммирования:

o ключевое и бесключевое хэширование;

o вычисление имитоприставок;

o использование кодов аутентификации сообщений.

Фактически, все эти методы различным образом из данных произвольного размера с использованием секретного ключа или без него вычисляют некую контрольную сумму фиксированного размера, однозначно соответствующую исходным данным.

Такое криптографическое контрольное суммирование широко используется в различных методах защиты информации, например:

o для подтверждения целостности любых данных в тех случаях, когда использование электронной подписи невозможно (например, из-за большой ресурсоемкости) или является избыточным;

o в самих схемах электронной подписи - "подписывается" обычно хэш данных, а не все данные целиком;

o в различных схемах аутентификации пользователей.

4. Генераторы случайных и псевдослучайных чисел позволяют создавать последовательности случайных чисел, которые широко используются в криптографии, в частности:

o случайные числа необходимы для генерации секретных ключей, которые, в идеале, должны быть абсолютно случайными;

o случайные числа применяются во многих алгоритмах электронной подписи;

o случайные числа используются во многих схемах аутентификации.

Не всегда возможно получение абсолютно случайных чисел - для этого необходимо наличие качественных аппаратных генераторов. Однако, на основе алгоритмов симметричного шифрования можно построить качественные генераторы псевдослучайных чисел.

2 Алгоритм симметричного шифрования

Шифрование информации - это преобразование открытой информации в зашифрованную (которая чаще всего называется шифртекстом или криптограммой ), и наоборот. Первая часть этого процесса называется зашифрованием , вторая - расшифрованием .

Можно представить зашифрование в виде следующей формулы:

С = E k1 (M), где:

M (message) - открытая информация,

С (cipher text) - полученный в результате зашифрования шифртекст,

E (encryption) - функция зашифрования, выполняющая криптографические преобразования над M ,

k1 (key) - параметр функции E , называемый ключом зашифрования.

В стандарте ГОСТ 28147-89 (стандарт определяет отечественный алгоритм симметричного шифрования) понятие ключ определено следующим образом: "Конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований".

Ключ может принадлежать определенному пользователю или группе пользователей и являться для них уникальным. Зашифрованная с использованием конкретного ключа информация может быть расшифрована только с использованием только этого же ключа или ключа, связанного с ним определенным соотношением.

Аналогичным образом можно представить и расшифрование:

M" = D k2 (C), где:

M" - сообщение, полученное в результате расшифрования,

D (decryption) - функция расшифрования; так же, как и функция зашифрования, выполняет криптографические преобразования над шифртекстом,

k2 - ключ расшифрования.

Для получения в результате расшифрования корректного открытого текста (то есть того самого, который был ранее зашифрован: M" = M), необходимо одновременное выполнение следующих условий:

1. Функция расшифрования должна соответствовать функции зашифрования.

2. Ключ расшифрования должен соответствовать ключу зашифрования.

При отсутствии верного ключа k2 получить исходное сообщение M" = M с помощью правильной функции D невозможно. Под словом "невозможно" в данном случае обычно понимается невозможность вычисления за реальное время при существующих вычислительных ресурсах.

Алгоритмы шифрования можно разделить на две категории (см. рис. 1):

1. Алгоритмы симметричного шифрования.

2. Алгоритмы асимметричного шифрования.

В алгоритмах симметричного шифрования для расшифрования обычно используется тот же самый ключ, что и для зашифрования, или ключ, связанный с ним каким-либо простым соотношением. Последнее встречается существенно реже, особенно в современных алгоритмах шифрования. Такой ключ (общий для зашифрования и расшифрования) обычно называется просто ключом шифрования .

В асимметричном шифровании ключ зашифрования k1 легко вычисляется из ключа k2 таким образом, что обратное вычисление невозможно. Например, соотношение ключей может быть таким:

k1 = a k2 mod p,

где a и p - параметры алгоритма шифрования, имеющие достаточно большую размерность.

Такое соотношение ключей используется и в алгоритмах электронной подписи.

Основной характеристикой алгоритма шифрования является криптостойкость , которая определяет его стойкость к раскрытию методами криптоанализа. Обычно эта характеристика определяется интервалом времени, необходимым для раскрытия шифра.

Симметричное шифрование менее удобно из-за того, что при передаче зашифрованной информации кому-либо необходимо, чтобы адресат заранее получил ключ для расшифрования информации. У асимметричного шифрования такой проблемы нет (поскольку открытый ключ можно свободно передавать по сети), однако, есть свои проблемы, в частности, проблема подмены открытого ключа и медленная скорость шифрования. Наиболее часто асимметричное шифрование используется в паре с симметричным - для передачи ключа симметричного шифрования, на котором шифруется основной объем данных. Впрочем, схемы хранения и передачи ключей - это тема отдельной статьи. Здесь же позволю себе утверждать, что симметричное шифрование используется гораздо чаще асимметричного, поэтому остальная часть статьи будет посвящена только симметричному шифрованию.

Симметричное шифрование бывает двух видов:

· Блочное шифрование - информация разбивается на блоки фиксированной длины (например, 64 или 128 бит), после чего эти блоки поочередно шифруются. Причем, в различных алгоритмах шифрования или даже в разных режимах работы одного и того же алгоритма блоки могут шифроваться независимо друг от друга или "со сцеплением" - когда результат зашифрования текущего блока данных зависит от значения предыдущего блока или от результата зашифрования предыдущего блока.

· Поточное шифрование - необходимо, прежде всего, в тех случаях, когда информацию невозможно разбить на блоки - скажем, некий поток данных, каждый символ которых должен быть зашифрован и отправлен куда-либо, не дожидаясь остальных данных, достаточных для формирования блока. Поэтому алгоритмы поточного шифрования шифруют данные побитно или посимвольно. Хотя стоит сказать, что некоторые классификации не разделяют блочное и поточное шифрование, считая, что поточное шифрование - это шифрование блоков единичной длины.

Рассмотрим, как выглядят изнутри алгоритмы блочного симметричного шифрования.

2.1 Структура алгоритмов шифрования

Подавляющее большинство современных алгоритмов шифрования работают весьма схожим образом: над шифруемым текстом выполняется некое преобразование с участием ключа шифрования, которое повторяется определенное число раз (раундов). При этом, по виду повторяющегося преобразования алгоритмы шифрования принято делить на несколько категорий. Здесь также существуют различные классификации, приведу одну из них. Итак, по своей структуре алгоритмы шифрования классифицируются следующим образом:

1. Алгоритмы на основе сети Фейстеля.

Сеть Фейстеля подразумевает разбиение обрабатываемого блока данных на несколько субблоков (чаще всего - на два), один из которых обрабатывается некоей функцией f() и накладывается на один или несколько остальных субблоков. На рис. 2 приведена наиболее часто встречающаяся структура алгоритмов на основе сети Фейстеля.

Рис. 2. Структура алгоритмов на основе сети Фейстеля.

Дополнительный аргумент функции f() , обозначенный на рис. 2 как Ki , называется ключом раунда . Ключ раунда является результатом обработки ключа шифрования процедурой расширения ключа, задача которой - получение необходимого количества ключей Ki из исходного ключа шифрования относительно небольшого размера (в настоящее время достаточным для ключа симметричного шифрования считается размер 128 бит). В простейших случаях процедура расширения ключа просто разбивает ключ на несколько фрагментов, которые поочередно используются в раундах шифрования; существенно чаще процедура расширения ключа является достаточно сложной, а ключи Ki зависят от значений большинства бит исходного ключа шифрования.

Наложение обработанного субблока на необработанный чаще всего выполняется с помощью логической операции "исключающее или" - XOR (как показано на рис. 2). Достаточно часто вместо XOR здесь используется сложение по модулю 2 n , где n - размер субблока в битах. После наложения субблоки меняются местами, то есть в следующем раунде алгоритма обрабатывается уже другой субблок данных.

Такая структура алгоритмов шифрования получила свое название по имени Хорста Фейстеля (Horst Feistel) - одного из разработчиков алгоритма шифрования Lucifer и разработанного на его основе алгоритма DES (Data Encryption Standard) - бывшего (но до сих пор широко используемого) стандарта шифрования США. Оба этих алгоритма имеют структуру, аналогичную показанной на рис. 2. Среди других алгоритмов, основанных на сети Фейстеля, можно привести в пример отечественный стандарт шифрования ГОСТ 28147-89, а также другие весьма известные алгоритмы: RC5, Blowfish, TEA, CAST-128 и т.д.

На сети Фейстеля основано большинство современных алгоритмов шифрования - благодаря множеству преимуществ подобной структуры, среди которых стоит отметить следующие:

o Алгоритмы на основе сети Фейстеля могут быть сконструированы таким образом, что для зашифрования и расшифрования могут использоваться один и тот же код алгоритма - разница между этими операциями может состоять лишь в порядке применения ключей Ki; такое свойство алгоритма наиболее полезно при его аппаратной реализации или на платформах с ограниченными ресурсами; в качестве примера такого алгоритма можно привести ГОСТ 28147-89.

o Алгоритмы на основе сети Фейстеля являются наиболее изученными - таким алгоритмам посвящено огромное количество криптоаналитических исследований, что является несомненным преимуществом как при разработке алгоритма, так и при его анализе.

Существует и более сложная структура сети Фейстеля, пример которой приведен на рис. 3.

Рис. 3. Структура сети Фейстеля.

Такая структура называется обобщенной или расширенной сетью Фейстеля и используется существенно реже традиционной сети Фейстеля. Примером такой сети Фейстеля может служить алгоритм RC6.

2. Алгоритмы на основе подстановочно-перестановочных сетей (SP-сеть - Substitution-permutation network).

В отличие от сети Фейстеля, SP-сети обрабатывают за один раунд целиком шифруемый блок. Обработка данных сводится, в основном, к заменам (когда, например, фрагмент входного значения заменяется другим фрагментом в соответствии с таблицей замен, которая может зависеть от значения ключа Ki ) и перестановкам, зависящим от ключа Ki (упрощенная схема показана на рис. 4).

Рис. 4. Подстановочно-перестановочная сеть.

Впрочем, такие операции характерны и для других видов алгоритмов шифрования, поэтому, на мой взгляд, название "подстановочно-перестановочная сеть" является достаточно условным.

SP-сети распространены существенно реже, чем сети Фейстеля; в качестве примера SP-сетей можно привести алгоритмы Serpent или SAFER+.

3. Алгоритмы со структурой "квадрат" (Square).

Для структуры "квадрат" характерно представление шифруемого блока данных в виде двумерного байтового массива. Криптографические преобразования могут выполняться над отдельными байтами массива, а также над его строками или столбцами.

Структура алгоритма получила свое название от алгоритма Square, который был разработан в 1996 году Винсентом Риджменом (Vincent Rijmen) и Джоан Деймен (Joan Daemen) - будущими авторами алгоритма Rijndael, ставшего новым стандартом шифрования США AES после победы на открытом конкурсе. Алгоритм Rijndael также имеет Square-подобную структуру; также в качестве примера можно привести алгоритмы Shark (более ранняя разработка Риджмена и Деймен) и Crypton. Недостатком алгоритмов со структурой "квадрат" является их недостаточная изученность, что не помешало алгоритму Rijndael стать новым стандартом США.

Рис. 5. Алгоритм Rijndael.

На рис. 5 приведен пример операции над блоком данных, выполняемой алгоритмом Rijndael.

4. Алгоритмы с нестандартной структурой, то есть те алгоритмы, которые невозможно причислить ни к одному из перечисленных типов. Ясно, что изобретательность может быть безгранична, поэтому классифицировать все возможные варианты алгоритмов шифрования представляется сложным. В качестве примера алгоритма с нестандартной структурой можно привести уникальный по своей структуре алгоритм FROG, в каждом раунде которого по достаточно сложным правилам выполняется модификация двух байт шифруемых данных (см. рис. 6).

Рис. 6. Модификация двух байт шифруемых данных.

Строгие границы между описанными выше структурами не определены, поэтому достаточно часто встречаются алгоритмы, причисляемые различными экспертами к разным типам структур. Например, алгоритм CAST-256 относится его автором к SP-сети, а многими экспертами называется расширенной сетью Фейстеля. Другой пример - алгоритм HPC, называемый его автором сетью Фейстеля, но относимый экспертами к алгоритмам с нестандартной структурой.

3. Применение сим метричного алгоритма шифрования

криптография алгоритм симметричный шифрование

Симметричные методы шифрования удобны тем, что для обеспечения высокого уровня безопасности передачи данных не требуется создания ключей большой длины. Это позволяет быстро шифровать и дешифровать большие объемы информации. Вместе с тем, и отправитель, и получатель информации владеют одним и тем же ключом, что делает невозможным аутентификацию отправителя. Кроме того, для начала работы с применением симметричного алгоритма сторонам необходимо безопасно обменяться секретным ключом, что легко сделать при личной встрече, но весьма затруднительно при необходимости передать ключ через какие-либо средства связи.

Схема работы с применением симметричного алгоритма шифрования состоит из следующих этапов:

стороны устанавливают на своих компьютерах программное обеспечение, обеспечивающее шифрование и расшифровку данных и первичную генерацию секретных ключей;

генерируется секретный ключ и распространяется между участниками информационного обмена. Иногда генерируется список одноразовых ключей. В этом случае для каждого сеанса передачи информации используется уникальный ключ. При этом в начале каждого сеанса отправитель извещает получателя о порядковом номере ключа, который он применил в данном сообщении;

отправитель шифрует информацию при помощи установленного программного обеспечения, реализующего симметричный алгоритм шифрования;

зашифрованная информация передается получателю по каналам связи;

получатель дешифрует информацию, используя тот же ключ, что и отправитель.

Ниже приведен обзор некоторых алгоритмов симметричного шифрования:

DES (Data Encryption Standard). Разработан фирмой IBM и широко используется с 1977 года. В настоящее время несколько устарел, поскольку применяемая в нем длина ключа недостаточна для обеспечения устойчивости к вскрытию методом полного перебора всех возможных значений ключа. Вскрытие этого алгоритма стало возможным благодаря быстрому развитию вычислительной техники, сделавшему с 1977 года огромный скачок;

Triple DES. Это усовершенствованный вариант DES, применяющий для шифрования алгоритм DES три раза с разными ключами. Он значительно устойчивее к взлому, чем DES;

Rijndael. Алгоритм разработан в Бельгии. Работает с ключами длиной 128, 192 и 256 бит. На данный момент к нему нет претензий у специалистов по криптографии;

Skipjack. Алгоритм создан и используется Агентством национальной безопасности США. Длина ключа 80 бит. Шифрование и дешифрование информации производится циклически (32 цикла);

IDEA. Алгоритм запатентован в США и ряде европейских стран. Держатель патента компания Ascom-Tech. Алгоритм использует циклическую обработку информации (8 циклов) путем применения к ней ряда математических операций;

RC4. Алгоритм специально разработан для быстрого шифрования больших объемов информации. Он использует ключ переменной длины (в зависимости от необходимой степени защиты информации) и работает значительно быстрее других алгоритмов. RC4 относится к так называемым потоковым шифрам.

В соответствии с законодательством США (соглашение International Traffic in Arms Peguiation), криптографические устройства, включая программное обеспечение, относится к системам вооружения.

Поэтому при экспорте программной продукции, в которой используется криптография, требуется разрешение Госдепартамента. Фактически экспорт криптографической продукции контролирует NSA (National Security Agency). правительство США очень неохотно выдаёт подобные лицензии, поскольку это может нанести ущерб национальной безопасности США. Вместе с тем совсем недавно компании Hewlett-Packard выдано разрешение на экспорт её криптографического комплекса Ver Secure в Великобританию, Германию, Францию, Данию и Австралию. Теперь НР может эксплуатировать в эти страны системы, использующие 128-битный криптостандарт Triple DES ,который считается абсолютно надёжным.

ЗАКЛЮЧЕНИЕ

Выбор для конкретных ИС должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем.

Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей. По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей.

Однако, этот критерий не учитывает других важных требований к криптосистемам:

* невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры,

* совершенство используемых протоколов защиты,

* минимальный объем используемой ключевой информации,

* минимальная сложность реализации (в количестве машинных операций), ее стоимость,

* высокая оперативность.

Желательно конечно использование некоторых интегральных показателей, учитывающих указанные факторы.

Для учета стоимости, трудоемкости и объема ключевой информации можно использовать удельные показатели - отношение указанных параметров к мощности множества ключей шифра.

Часто более эффективным при выборе и оценке криптографической системы является использование экспертных оценок и имитационное моделирование.

В любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в ИС информации.

Эллиптические функции также относятся к симметричным методам шифрования.

Эллиптические кривые - математические объекты, которые математики интенсивно изучают начиная с 17 - го века. Н.Коблиц и В. Миллер независимо друг от друга предложили системы системы криптозащиты с открытым ключом, использующие для шифрования свойства аддитивной группы точек на эллиптической кривой. Эти работы легли в основу криптографии на основе алгоритма эллиптических кривых.

Множество исследователей и разработчиков испытывали алгоритм ЕСС на прочность. Сегодня ЕСС предлагает более короткий и быстрый открытый ключ, обеспечивающий практичную и безопасную технологию, применимую в различных областях. Применение криптографии на основе алгоритма ЕСС не требует дополнительной аппаратной поддержки в виде криптографического сопроцессора. Всё это позволяет уже сейчас применять криптографические системы с открытым ключом и для создания недорогих смарт-карт.

Список литературы

1) Чмора А.Л. Современная прикладная криптография. 2-е изд., стер. - М.: Гелиос АРВ, 2004. - 256с.: ил.

2) А.Г. Ростовцев, Н.В. Михайлова Методы криптоанализа классических шифров.

3) А. Саломаа Криптография с открытым ключом.

4) Герасименко В.А. Защита информации в автоматизированных системах обработки данных кн. 1.-М.: Энергоатомиздат. -2004.-400с.

5) Грегори С. Смит. Программы шифрования данных // Мир ПК -2007. -№3.

6) Ростовцев А. Г., Михайлова Н. В. Методы криптоанализа классических шифров. -М.: Наука, 2005. -208 с.

Размещено на http://www.allbest.ru/

Подобные документы

    История появления симметричных алгоритмов шифрования. Роль симметричного ключа в обеспечении степени секретности сообщения. Диффузия и конфузия как способы преобразования бит данных. Алгоритмы шифрования DES и IDEA, их основные достоинства и недостатки.

    лабораторная работа , добавлен 18.03.2013

    Особенности шифрования данных, предназначение шифрования. Понятие криптографии как науки, основные задачи. Анализ метода гаммирования, подстановки и метода перестановки. Симметрические методы шифрования с закрытым ключом: достоинства и недостатки.

    курсовая работа , добавлен 09.05.2012

    Принцип программной реализации классических криптографических методов. Метод шифрования с использованием таблицы Виженера. Создание текстового редактора "Блокнот", содержащего методы шифрования. Вербальный алгоритм и программа для методов шифрования.

    курсовая работа , добавлен 20.01.2010

    История криптографии. Сравнение алгоритмов шифрования, применение в операционной системе. Анализ продуктов в области пользовательского шифрования. Включение и отключение шифрования на эллиптических кривых. Использование хеш-функции. Электронная подпись.

    курсовая работа , добавлен 18.09.2016

    Появление шифров, история эволюции криптографии. Способ приложения знаний особенностей естественного текста для нужд шифрования. Критерии определения естественности. Способ построения алгоритмов симметричного шифрования. Криптосистема с открытым ключом.

    реферат , добавлен 31.05.2013

    Криптография и шифрование. Симметричные и асимметричные криптосистемы. Основные современные методы шифрования. Алгоритмы шифрования: замены (подстановки), перестановки, гаммирования. Комбинированные методы шифрования. Программные шифраторы.

    реферат , добавлен 24.05.2005

    Автоматизация процесса шифрования на базе современных информационных технологий. Криптографические средства защиты. Управление криптографическими ключами. Сравнение симметричных и асимметричных алгоритмов шифрования. Программы шифрования информации.

    курсовая работа , добавлен 02.12.2014

    История алгоритмов симметричного шифрования (шифрования с закрытым ключом). Стандарты на криптографические алгоритмы. Датчики случайных чисел, создание ключей. Сфера интересов криптоанализа. Системы электронной подписи. Обратное преобразование информации.

    краткое изложение , добавлен 12.06.2013

    Основные методы криптографической защиты информации. Система шифрования Цезаря числовым ключом. Алгоритмы двойных перестановок и магические квадраты. Схема шифрования Эль Гамаля. Метод одиночной перестановки по ключу. Криптосистема шифрования данных RSA.

    лабораторная работа , добавлен 20.02.2014

    Краткая история развития криптографических методов защиты информации. Сущность шифрования и криптографии с симметричными ключами. Описание аналитических и аддитивных методов шифрования. Методы криптографии с открытыми ключами и цифровые сертификаты.

Основные понятия и определения

По мере образования информационного общества крупным государствам становятся доступны технические средства тотального надзора за миллионами людей. Поэтому криптография становится одним из основных инструментов, обеспечивающих конфиденциальность, доверие, авторизацию, электронные платежи, корпоративную безопасность и другие важные вещи.

Проблемой защиты информации путем ее преобразования занимается криптология , которая разделяется на два направления: криптографию и криптоанализ . Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации. Сфера интересов криптоанализа – исследование возможности расшифрования информации без знания ключей.

Современная криптография включает в себя 4 основных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов – передача конфиденциальной информации по каналам связи, установление подлинности передаваемых сообщений, хранение информации на носителях в зашифрованном виде.

Криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа. В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите.

Алфавит – конечное множество используемых для кодирования информации знаков. Примеры:

ü алфавит Z33 – содержит 32 буквы русского алфавита и пробел;

ü алфавит Z256 – символы, входящие в стандартные коды ASCII и КОИ-8;

ü бинарный алфавит Z2 – два символа (0 и 1);

ü восьмеричный или шестнадцатеричный алфавиты.

Текст – упорядоченный набор из элементов алфавита.

Шифрование – преобразовательный процесс замены исходного (открытого) текста на шифрованный текст.

Дешифрование (обратный шифрованию) – преобразовательный процесс замены на основе ключа шифрованного текста на исходный текст.

Ключ – информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство Т [Т 1 , Т 2 , …, Т к ] преобразований открытого текста. Члены этого семейства индексируются или обозначаются символом к ; параметр к является ключом. Пространство ключей К – это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд знаков алфавита.

Криптосистемы разделяются на симметричные и асиммитричные . В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. В асимметричныхсистемах (с открытым ключом) используются два ключа – открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается – с помощью закрытого ключа, известного только получателю сообщения.

Термины распределение ключей и управление ключами относятся к процессам обработки информации, содержанием которых является составление ключей и распределение их между пользователями.

Электронной (цифровой) подписью называется присоединяемой к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью называется характеристика шифра, определяющая ее стойкость к дешифрованию без знания ключа (т.е. стойкостью к криптоанализу). Имеется несколько показателей криптостойкости:

количество всех возможных ключей;

среднее время, необходимое для криптоанализа.

Требования к криптосистемам

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако имеет высокую производительность, простоту, защищенность. Программная реализация более практична, допускает известную гибкость в использовании.

Общепринятые требования к криптографическим системам:

· зашифрованное сообщение должно поддаваться чтению только при наличии ключа;

· число операций, необходимых для определения использованного ключа по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не менее общего числа возможных ключей;

· число операций, необходимых для расшифровывания информации путем перебора возможных ключей, должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможностей сетевых вычислений);

· знание алгоритма шифрования не должно влиять на надежность защиты;

· незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения;

· структурные элементы алгоритма шифрования должны быть неизменными;

· дополнительные биты, вводимые в сообщение в процессе шифрования, должны быть полностью и надежно скрыты в шифрованном тексте;

· длина шифрованного текста должна быть равной длине исходного текста;

· не должно быть простых и легко устанавливаемых зависимостей между ключами, последовательно используемыми в процессе шифрования;

· любой ключ из множества возможных должен обеспечивать надежную защиту информации;

· алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

Основные алгоритмы шифрования

Метод шифровки-дешифровки называют шифром . Ключ, используемый для дешифровки, может не совпадать с ключом, используемым для шифрования, однако в большинстве алгоритмов ключи совпадают.

Алгоритмы с использованием ключа делятся на два класса: симметричные (с секретным ключом) и асимметричные (с открытым ключом). Симметричные алгоритмы используют один и тот же ключ для шифрования и для дешифрования или же ключ для дешифрования просто вычисляется по ключу шифрования. В асимметричных алгоритмах используются разные ключи, и ключ для дешифровки не может быть вычислен по ключу шифровки.

Симметричные алгоритмы подразделяются на потоковые шифры и блочные шифры. Потоковые позволяют шифровать информацию побитово, в то время как блочные работают с некоторым набором битов данных (обычно размер блока составляет 64 бита ) и шифруют этот набор как единое целое.

Обычно ключ шифрования представляет собой файл или массив данных и хранится на персональном ключевом носителе (например, флешке или смарт-карте); обязательно принятие мер, обеспечивающих недоступность персонального ключевого носителя кому-либо, кроме его владельца.

Подлинность обеспечивается за счет того, что без предварительного расшифровывания практически невозможно осуществить смысловую модификацию и подлог криптографически закрытого сообщения. Фальшивое сообщение не может быть правильно зашифровано без знания секретного ключа.

Целостность данных обеспечивается присоединением к передаваемым данным специального кода (имитовставки ), вырабатываемой по секретному ключу. Имитовставка является разновидностью контрольной суммы, т.е. некоторой эталонной характеристикой сообщения, по которой осуществляется проверка целостности последнего. Алгоритм формирования имитовставки должен обеспечивать ее зависимость по некоторому сложному криптографическому закону от каждого бита сообщения. Проверка целостности сообщения выполняется получателем сообщения путем выработки по секретному ключу имитовставки, соответствующей полученному сообщению, и ее сравнения с полученным значением имитовставки. При совпадении делается вывод о том, что информация не была модифицирована на пути от отправителя к получателю.

Симметричное шифрование идеально подходит для шифрования информации «для себя», например, с целью предотвращения несанкционированного доступа к ней в отсутствие владельца. Обладаю высокой скоростью шифрования, одноключевые криптосистемы позволяют решать многие важные задачи защиты информации. Однако автономное использование симметричных криптосистем в компьютерных сетях порождает проблему распределения ключей шифрования между пользователями.

Перед началом обмена зашифрованными данными необходимо обменяться секретными ключами со всеми адресатами. Передача секретного ключа симметричной криптосистемы не может быть осуществлена по общедоступным каналам связи, секретный ключ надо передавать отправителю и получателю по защищенному каналу (или с помощью курьера). Для обеспечения эффективной защиты циркулирующих в сети сообщений необходимо огромное число часто меняющихся ключей (один ключ на каждую пару пользователей). Проблема распределения секретных ключей при большом количестве пользователей является весьма трудоемкой и сложной задачей. В сети на N пользователей необходимо распределить N(N-1)/2 секретных ключей.

Асимметричные шифры допускают, чтобы открытый ключ был доступен всем (например, опубликован в газете). Это позволяет любому зашифровать сообщение. Однако расшифровать это сообщение сможет только пользователь, владеющий ключом дешифровки. Ключ для шифрования называют открытым ключом , а ключ для дешифрования – закрытым ключом или секретным ключом .

Секретный и открытый ключи генерируются попарно. Секретный ключ должен оставаться у его владельца и быть надежно защищен от НСД (аналогично ключу шифрования в симметричных алгоритмах). Копия открытого ключа должна находиться у каждого абонента криптографической сети, с которым обменивается информацией владелец секретного ключа.

Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают свойством: при заданном значении х относительно просто вычислить значение f(x) , однако, если yM = j(x) , то нет простого пути вычисления значения х . Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом.

Процесс передачи зашифрованной информации в асимметричной криптосистеме осуществляется следующим образом.

Подготовительный этап :

· абонент В генерирует пару ключей: секретный ключ k в и открытый ключ К в;

· открытый ключ К в посылается абоненту А и остальным абонентам (или делается доступным, например на разделяемом ресурсе).

Использование (обмен информацией между А и В):

· абонент А зашифровывает сообщение с помощью открытого ключа К в абонента В и отправляет шифротекст абоненту В;

· абонент В расшифровывает сообщение с помощью своего секретного ключа k в; никто другой не может расшифровать данное сообщение, т.к. не имеет секретного ключа абонента В.

Защита информации в асимметричной криптосистеме основана на секретности ключа k в получателя сообщения.

Преимущества асимметричных криптографических систем перед симметричными криптосистемами:

ü в асимметричных криптосистемах решена сложная проблема распределения ключей между пользователями, т.к. каждый пользователь может сгенерировать свою пару ключей сам, а открытые ключи пользователей могут свободно публиковаться и распространяться по сетевым коммуникациям;

ü исчезает квадратичная зависимость числа ключей от числа пользователей; в асимметричной криптосистеме число используемых ключей связано с числом абонентов линейной зависимостью (в системе из N пользователей используется 2N ключей), а не квадратичной, как в симметричных системах;

ü асимметричные криптосистемы позволяют реализовывать протоколы взаимодействия сторон, которые не доверяют друг другу, поскольку при использовании асимметричных криптосистем закрытый ключ должен быть известен только его владельцу.

Недостатки асимметричных криптосистем:

ü на настоящий момент нет математического доказательства необратимости используемых в асимметричных алгортмах функций;

ü асимметричное шифрование существенно медленнее симметричного, поскольку при шифровке и расшифровке используются весьма ресурсоемкие операции; по этой же причине реализовать аппаратный шифратор с асимметричным алгоритмом существенно сложнее, чем реализовать аппаратно симметричный алгоритм;

ü необходимость защиты открытых ключей от подмены.

Современные алгоритмы шифровки-дешифровки достаточно сложны и их невозможно выполнять вручную. Настоящие криптографические алгоритмы разработаны для использования компьютерами или специальными аппаратными устройствами. В большинстве приложений криптография производится программным обеспечением и имеется множество доступных криптографических пакетов.

Симметричные алгоритмы работают быстрее, чем асимметричные. На практике оба типа алгортмов часто используются вместе: алгоритм с открытым ключом используется для того, чтобы передать случайным образом сгенерированный секретный ключ, который затем используется для дешифровки сообщения.

Многие качественные криптографические алгоритмы доступны широко. Наиболее известными симметричными алгоритмами являются DES и IDEA; лучший асимметричный алгоритм – RSA. В России за стандарт шифрования принят ГОСТ 28147-89.

В таблице 1 приведена классификации криптографического закрытия информации.

Таблица 1

Виды преобразования Способы преобразований Разновидности способа Способ реализации
Шифрование Замена (подстановка) Простая (одноалфавитная) Прогр.
Многоалфавитная одноконтурная обыкновенная Прогр.
Многоалфавитная одноконтурная монофоническая Прогр.
Прогр.
Перестановка Простая Прогр.
Усложненная по таблице Прогр.
Усложненная по маршрутам Прогр.
Аналитическое преобразование По правилам алгебры матриц Прогр.
По особым зависимостям Прогр.
Гаммирование С конечной короткой гаммой Аппар.-прогр.
С конечной длинной гаммой Аппар.-прогр.
С бесконечной гаммой Аппар.-прогр.
Комбинированные Замена+перестановка Аппар.-прогр.
Замена+гаммирование Аппар.-прогр.
Перестановка+гаммирование Аппар.-прогр.
Гаммирование+гаммирование Аппар.-прогр.
Кодирование Смысловое По специальным таблицам (словарям) Прогр.
Символьное По кодовому алфавиту Прогр.
Другие виды Рассечение-разнесение Смысловое Аппар.-прогр.
Механическое Прогр.
Сжатие-расширение

I. Под шифрованием понимается такой вид криптографического закрытия, при котором преобразованию подвергается каждый символ защищаемого сообщения.

Все известные способы шифрования можно разбить на пять групп: замена (подстановка), перестановка, аналитическое преобразование, гаммирование и комбинированное шифрование. Каждый из этих способов может иметь несколько разновидностей.

Разновидности способа замена (подстановка ):

1) Простая (одноалфавитная) – символы шифруемого текста заменяются другими символами того же самого алфавита. Если объем зашифрованного текста большой, то частоты появления букв в зашифрованном тексте будут ближе к частотам появления букв в алфавите (того языка, на котором написан текст) и расшифровка будет очень простой. Данный способ в настоящее время используется редко и в тех случаях, когда шифруемый текст короток.

2) Многоалфавитная подстановка - наиболее простой вид преобразований, заключающийся в замене символов исходного текста на символы других алфавитов по более или менее сложному правилу. Для обеспечения высокой криптостойкости требуется использование больших ключей.

При многоалфавитной одноконтурной обыкновенной подстановке для замены символов исходного текста используется несколько алфавитов, причем смена алфавита осуществляется последовательно и циклически, т.е. первый символ заменяется соответствующим символом первого алфавита, второй – символом второго алфавита и т.д. до тех пор, пока не будут использованы все выбранные алфавиты. После этого использование алфавитов повторяется.

Особенностью многоалфавитной одноконтурной монофонической подстановки является то, что количество и состав алфавитов выбираются таким образом, чтобы частоты появления всех символов в зашифрованном тексте были одинаковыми. При таком положении затрудняется криптоанализ зашифрованного текста с помощью его статистической обработки. Выравнивание частот появления символов достигается за счет того, что для часто встречающихся символов исходного текста предусматривается использование большего числа заменяющих элементов, чем для редко встречающихся.

Многоалфавитная многоконтурная подстановка заключается в том, что для шифрования используется несколько наборов (контуров) алфавитов, используемых циклически, причем каждый контур в общем случае имеет свой индивидуальный период применения. Этот период исчисляется, как правило, количеством знаков, после зашифровки которых меняется контур алфавитов.

Способ перестановки - несложный способ криптографического преобразования. Используется, как правило, в сочетании с другими способами. Данный способ заключается в том, что символы шифруемого текста переставляются по определенным правилам внутри шифруемого блока символов. Все процедуры шифрования и расшифровки способом перестановки являются в достаточной степени формализованными и могут быть реализованы алгоритмически.

Шифрование простой перестановкой осуществляется следующим образом:

· выбирается ключевое слово с неповторяющимися символами;

· шифруемый текст записывается последовательными строками под символами ключевого слова;

· зашифрованный текст выписывается колонками в той последовательности, в которой располагаются в алфавите буквы ключа (или в порядке следования цифр в натуральном ряду, если он цифровой).

Пример:

открытый текст: БУДЬТЕ ОСТОРОЖНЫ

ключ: 5 8 1 3 7 4 6 2

схема шифрования:

Б У Д Ь Т Е q О (где q – пробел)

С Т О Р О Ж Н Ы

Группируем по 2 символа и получаем зашифрованный текст:

ДООЫЬРЕЖБСqНТОУТ

Недостаток шифрования простой перестановкой заключается в том, что при большой длине шифруемого текста в зашифрованном тексте могут проявиться закономерности символов ключа. Для устранения этого недостатка можно менять ключ после шифрования определенного количества знаков. При достаточно частой смене ключа стойкость шифрования можно существенно повысить. При этом, однако, усложняется организация процесса шифрования и дешифрования.

Усложненная перестановка по таблицам заключается в том, что для записи символов шифруемого текста используется специальная таблица, в которую введены некоторые усложняющие элементы. Таблица представляет собой матрицу, размеры которой могут быть выбраны произвольно. В нее, как в случае простой перестановки, записываются знаки шифруемого текста. Усложнение заключается в том, что определенное число клеток таблицы не используются. Количество и расположение неиспользуемых элементов является дополнительным ключом шифрования. Шифруемый текст блоками по (m x n S ) элементов записывается в таблицу (m x n – размеры таблицы, S – количество неиспользуемых элементов). Далее процедура шифрования аналогична простой перестановке.

Варьируя размерами таблицы, последовательностью символов ключа, количеством и расположением неиспользуемых элементов, можно получить требуемую стойкость шифрованного текста.

Усложненная перестановка по маршрутам обладает высокой стойкостью шифрования, использует усложненный метод перестановок по маршрутам типа гамильтоновских. При этом для записи символов шифруемого текста используются вершины некоторого гиперкуба, а знаки зашифрованного текста считаются по маршрутам Гамильтона, причем используется несколько различных маршрутов.

Способ шифрования с помощью аналитических преобразований обеспечивает достаточно надежное закрытие информации. Для этого можно применять методы алгебры матриц, например, умножение матрицы на вектор. Если матрицу использовать в качестве ключа, а вместо компонента вектора подставлять символы исходного текста, то компоненты результирующего вектора будут представлять собой символы зашифрованного текста. Расшифровывание осуществляется с использованием того же правила умножения матрицы на вектор, только в качестве основы берется матрица, обратная той, с помощью которой осуществляется закрытие, а в качестве вектора-сомножителя – соответствующее количество символов закрытого текста. Значениями вектора-результата будут цифровые эквиваленты знаков открытого текста.

Гаммирование - этот метод заключается в наложении на исходный текст некоторой псевдослучайной последовательности, генерируемой на основе ключа. Процедуру наложения гаммы на исходный текст можно осуществлять двумя способами. В первом способе символы исходного текста и гаммы заменяются цифровыми эквивалентами, которые затем складываются по модулю К , где К – количество символов в алфавите, т.е.

t c = (t p + t g) mod K , где t c , t p ,t g – символы соответственно зашифрованного текста, исходного текста и гаммы.

При втором способе символы исходного текста и гаммы представляются в виде двоичного кода, а затем соответствующие разряды складываются по модулю 2. Вместо сложения по модулю 2 при гаммировании можно использовать другие логические операции, например, преобразование по правилу логической эквивалентности или логической неэквивалентности. Такая замена равносильна введению еще одного ключа, которым является выбор правила формирования символов зашифрованного сообщения из символов исходного текста и гаммы.

Стойкость шифрования способом гаммирования определяется, главным образом, свойствами гаммы – длительностью периода и равномерностью статистических характеристик. Последнее свойство обеспечивает отсутствие закономерностей в появлении различных символов в пределах периода.

При хороших статистических свойствах гаммы стойкость шифрования определяется только длиной ее периода. При этом, если длина периода гаммы превышает длину шифруемого текста, то такой шифр теоретически является абсолютно стойким. В качестве бесконечной гаммы может быть использована любая последовательность случайных символов, например, последовательность цифр числа ПИ. При шифровании с помощью ЭВМ последовательность гаммы формируется с помощью датчика псевдослучайных чисел.

Комбинированные способы шифрования используют одновременно несколько различных способов, т.е. последовательное шифрование исходного текста с помощью двух или более способов. Это является достаточно эффективным средством повышения стойкости шифрования.

Типичным примером комбинированного шифра является национальный стандарт США криптографического закрытия данных (DES).

II. Под кодированием понимается такой вид криптографического закрытия, когда некоторые элементы защищаемых данных (это не обязательно отдельные символы) заменяются заранее выбранными кодами (цифровыми, буквенными, буквенно-цифровыми сочетаниями и т. п.).

Этот метод имеет две разновидности: смысловое и символьное кодирование. При смысловом кодировании кодируемые элементы имеют вполне определенный смысл (слова, предложения, группы предложений). При символьном кодировании кодируется каждый символ защищаемого сообщения. Символьное кодирование по существу совпадает с шифрованием заменой.

При правильном использовании коды намного сложнее раскрыть, чем другие классические системы. Это объясняется тремя причинами. Во-первых , большая длина используемого кода (при шифровании – несколько сотен бит; кодовая книга – сотни тысяч – миллион бит). Во-вторых , коды удаляют избыточность – работа криптоаналитика осложняется. В-третьих , коды работают с относительно большими блоками открытого текста (словами и фразами) и, следовательно, скрывают локальную информацию, которая, в противном случае, могла бы дать ценные «зацепки» для криптоаналитика.

К недостаткам кодирования следует отнести то, что ключ при кодировании используется недостаточно хорошо, т.к. при кодировании отдельного слова и фразы используется только очень малая часть кодовой книги. В результате код при интенсивном использовании поддается частичному анализу и оказывается особенно чувствительным к вскрытию при наличии известного открытого текста. По этим причинам для обеспечения большей надежности коды необходимо чаще менять.

III. Другие способы криптографического закрытия включают в себя рассечение/разнесение и сжатие данных. Рассечение/разнесение данных состоит в том, что массив защищаемых данных рассекается на такие элементы, каждые из которых не позволяет раскрыть содержание защищаемой информации, и выделенные таким образом элементы размещаются в различных зонах памяти. Обратная процедура называется сборкой данных. Совершенно очевидно, что алгоритм разнесения и сборки данных должен сохраняться в тайне.

Сжатие данных представляет собой замену часто встречающихся одинаковых строк данных или последовательностей одинаковых символов некоторыми заранее выбранными символами.

Хеш-функции

Хеш-функцией называется односторонняя функция, предназначенная для получения дайджеста или "отпечатков пальцев" файла, сообщения или некоторого блока данных.

Изначально функции хеширования использовались как функции создания уникального образа информационных последовательностей произвольной длины, с целью идентификации и определения их подлинности. Сам образ должен быть небольшим блоком фиксированной длины, как правило, 30, 60, 64, 128, 256, или 512 бит. Поэтому операции поиска сортировки и другие с большими массивами или базами данных существенно упрощаются, т.е. занимают гораздо меньшее время. Для обеспечения требуемой вероятности ошибки необходимо обеспечивать ряд требований к функции хеширования:

· хеш-функция должна быть чувствительна к всевозможным изменениям в тексте M, таким как вставки, выбросы, перестановки;

· хеш-функция должна обладать свойством необратимости, то есть задача подбора документа M", который обладал бы требуемым значением хеш-функции, должна быть вычислительно неразрешима;

· вероятность того, что значения хеш-функций двух различных документов (вне зависимости от их длин) совпадут, должна быть ничтожно мала.

Обеспечить эти требования могут большое количество существующих математических функций. Если данные функции используются для сортировки, поиска и т.д. Однако позднее, опираясь на работы Симонсона по теории аутентификации, стало явным целесообразность использования методов хеширования в схемах аутентификации сообщений в каналах связи и телекоммуникационных системах. В связи с чем, открылся ряд направлений в исследованиях в области криптографии, которые связаны с разработкой новых и усовершенствованием существующих хеш-функций. Основная идея использования хеширующих функций является получение на их основе однонаправленных функций, которые являются основным продуктом для разработки современных криптографических механизмов и методов аутентификации.
Рассмотрим основные понятия касающиеся однонаправленных функций хеширования.

Большинство хеш-функций строится на основе однонаправленной функции f( ) , которая образует выходное значение длиной n при задании двух входных значений длиной n . Этими входами являются блок исходного текста Mi и хеш-значение Hi–1 предыдущего блока текста (рис.1):

Hi = f (Mi, Hi–1) .

Хеш-значение, вычисляемое при вводе последнего блока текста, становится хеш-значением всего сообщения M.

Рис.1. Схема однонаправленной хэш-функции

В результате однонаправленная хеш-функция всегда формирует выход фиксированной длины n (независимо от длины входного текста). Алгоритм хеширования является итерационным, поэтому функции хеширования еще называют итерационными алгоритмами. Сущность алгоритма хеширования заключается в его односторонности, т.е. функция должна работать в одну сторону – сжимать, перемешивать и рассеивать, но никогда не восстанавливать. Подобные схемы позволяют отслеживать изменения исходных текстов, что является обеспечением целостности данных, а в алгоритмах цифровой подписи еще обеспечивать аутентичность данных. Однако в чистой форме аутентичность эти функции не позволяют подтвердить.